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H ABSTRACT

Various initial-boundary value problems and Caucyproblems can be

written in the formQ--+ A (u) -0 where p:R + R is nondecreasing and A

is the li7ar generator of strongly continuous nonexpansive semigroup

in an CLI+ space. For example, if A - -A (subject, perhaps, to suitable

boundary conditions) we obtain equations arising in flow in a porous medium or

plasma physics (depending on the choice of 0 ) while if A - 1- acting in

L1 (a) we have a scalar conservation law. In this paper we show that if M,

m > 0 and ms' 2  ' V' Mo 2  , where v E (1,-il , then (roughly

speaking), the norm of tdu/dt may be estlmated in terms of the initial

data u0 in L1. Such estimates give information about the regularity of

solutions, asymptotic behaviour, etc., in applications.

Side issues, such as the introduction of sufficiently regular approximate

problems on which estimates can be made and the assignment of a precise

meaning to the operator "AV", are also dealt with. These considerations are

of independent interest.
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SIGNIFICANCE AND EXPLANATION

Many models of interesting phenomena yield equations for the evolution of

a system of tin-abstract form u' + Ayp(u) - 0 where is a nonlinear

nondecreasing function and A is an -operator". E.g., A may be the 6€i/Jd *

Laplacian (perhaps under boundary conditions) or A may be while PL

may be a power law. kAW Models like this occur in porous flow,

plasmas and conservation laws. In this work it is shown that a broad class of

such problems are solvable by the nonlinear semigroup theory. The main point,

however, is a 'wregularizinge'effect which estimates the speed of the system at

time t > 0 by the integral of the initial data. This has consequences for

the regularity of the solutions of concrete problems and their asymptotic

behaviour.
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REGULARIZING EFFECTS FOR ut + AV(u) - 0 IN L1.

Michael G. Crandall and Michel Pierre

Introduction.

When applied to a solution u of the equation

(1) ut - AV(u) - o in (0,-) x RN

one of the main results of this paper implies that

(2) f Ju (t,x)ldx (4 S I u(O,2c)idx
RN R

provided i is nondecreasing, v(0) - 0 and has the property

(3) 0 < m 4 V 0(r) V"(r) • M a.e. r e R for v - 1 or V - -1
( (W))

2

Indeed, when (3) holds so does (2) and C depends only on the structure constants m

and M of (3). Note that the initial data u(0,x) need only belong to L (IN).

The validity of the "L1 -regularizing" inequality (2) depends strongly on the properties of

the operator 4-A in the space L1 (0N). These properties are in fact enjoyed by a large

class of operators of the form A* where V is as above and A is a linear operator in

an LI space. Indeed, it is enough that -A be the infinitesimal generator of a strongly

continuous nonexpansive semigroup e tA  in LI such that 0 4 u0 4 1 a.e. implies
00

0 4 e' U0 4 1 a.e. (i.e., e tA is submarkovian). Thus the results apply to (1) set

in a bounded domain with linear homogeneous boundary conditions of Dirichlet or Neumann

type imposed on O(u). Similarly, -A can be replaced by more general elliptic operators

and we can, for example, also exhibit the conservation law

(4) t - (U)x - 0 on (O,-) x R

as an example of the theory developed here.

The estimate (2) is already known if V(r) - r. In this event (1) is the linear heat

equation and (2) says that -A generates an analytic semigroup in LI(RN), which is

obvious from the solution formula. There has not beer. much success in developing a general

nonlinear analogue of the linear idea of an analytic semigroup and only a few nonlinear

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-7927062.



results with estimates like (2) have been found. We refer to (7] for more coiments in this

direction as well as to [4] where a large class of homogeneous nonlinearities are exhibited

which permit estimates like (2). The main contribution of this paper is the introduction

of interesting new classes of such nonlinear examples.

If o(r) - Irlasignr with a > 0 , then V(r)V"(r)/(0'(r))2 . (a-1)/a and (3) holds

with m - (a-1]/a - M and v - sign(a-1) if a * 1. In this case (1) is covered by the

results of (7]. Note that we exclude a= I here. As mentioned in (7], this is not

surprising since the proof of our results also applies to (4) and no estimate like (2)

holds if o(r) - r in (4).

We also show in this paper that nonnegative solutions of

(5) dii + A(u) - 0
dt

(which is given a precise sense in the text) satisfy a pointwise estimate

(6) ut - -ct

for the class of operators AV where A is as above and the nondecreasing function V

satisfies (0) - 0 and

(7) 0 < m 4 (.e. r > 0(01' r)) 
2

It was previously observed by L. C. Evans and one of the authors that (7) implies (6) for

nonnegative solutions of (1). (Pointwise estimates like (6) are enjoyed only by

a
nonnegative solutions.) For 0(r) - r , a > 0 , this was first shown in the case of

(1) by Aronson and Benilan (1] while (7] covers a general class of homogeneous

nonlinearities. The paper 18] covers (1) for a quite general class of nonlinearities

(considerably more general than (71), but this result requires extensive exploitation of

special properties of the Laplace operator. Here our result is more abstract, in the

spirit of [7].

The first section is devoted to the abstract results. As usual, the problem of

defining OAO %And hence (5)) in a precise sense must be disposed of. Similarly, the

appropriate meaning must be given to (2), its abstract analogue, and (6). These matters

and the approximations introduced in the proofs of the main results are of substantial

independent interest. Several proofs of results used in the sequel are collected in the

Appendix.
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O
section 1.

Throughout this isection 0 denotes a 0-finite measure space with the measure denoted

by "sea". The norm of LP(A) is denoted by I I *The integral of f C L i(Q) over a
p

measurable 0 c 01 is written either as f f or I fdx
0 0

Recall that a (possibly nonlinear) mapping ASDWA C X + X in a Banach space X is

accretive irf for each ). > 0 (I+.XA)- is a nonexpansive mapping of R(I+XA) (the range

of I+)XA] into X . It A in accretive and R(I+.A) - X for X) >a (equivalently,

R(I+A) - I), then A is im-accretive. If A is linear and densely defined. then A is a-

scretive if and only if -A is the infinitesimal generator of a (linear) strongly

cx~ntinuous nonexpaneive aeaaigroup etA on X . More generally, If A ia acretive and

N (I.AA) 0 DWa for X 0 it determines a (in general, nonlinear) strongly continuous

nonsexpansive semigroup e~t on U *) (We use the notation etA in the linear and

nonlinear cases.) See, e.g. [2,161# [91.

We assume a densely defined linear operator AtD(A) C Ll (91) + L 1(2) is given which

t4izzes

WA) A is m-accretive in L (a)

and IIf X 0 ,f e L 1(0), a,b e R and a 4 f -C b a.e.,
(A2)

then a - (1%A) f 4b a.

since Ailner, densely defined and im-accretive, WA) is equivalent to

0 4 f -C 1 -0 -C etAf 4 1 .(Actually, (Al) and (AW Limply DCA is doee (t10j).)

It was proved in E5) ti'et for linear m-accretive A's as above, WA) is equivalent to[If 0 is a maximal monotone graph in a x with 0 c 0(0) ,u e D(A).

WA) Aus C IP(Q), 1 4 p 4 v C Lp/(rl1)() , v(x) e 0(u(x)) a.*. then* 1 fv~x)Au(x)dx ,0.
The proper interpretation of "AO" is discussed next. set;

P -{'i:kR j 0 in continuous, nondecreasing and 4P(O) -0).

01 1 1
For any %* e P0 and 3:0(B) S L (0) + L (9) the operator W., in L (0) in first defined

in the obvious ways

-3-
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I1

D(BO) - {u e L(f); OP(u) C D(B)}

Vu C D(BP) , Bfp(u) - 8(4(u)).

The proposition below sumarizes some results which follow easily from the results and

arguments of, e.g., [5] .

Proposition 1. Let A be linear, densely defined and satisfy (A1), (A2). Let 0 C PO.

Then:

i) AO0 is acCretive in L 1 (Qi)

(ii) For each c - 0 and A > 0, cl + A(I+AA) - 1  satisfies (Al), (A2)

(iii) For each c > 0 , (eI+A)0 is m-accretive in L (a)

(iv) For X ; 0 , |I+XA ) is an order-preserving nonexpansive mapping of

R(I+AAV) into L1 (0). Moreover, f c R(I+AA40) a,b 4 R and a 4 f C b

a.*. implies a (I+AAV) If 4 b a.e.

(v) ful • I(I+XA)(u)Ip for u e D(AV), 1 4 p 4 .

The main omission of Proposition I is the assertion that AW is m-accretive. In

general this fails even if A satisfies (Al), (A2). However, the pair (A,W) typically

determines an w-accretive operator A which extends AO and (Asp) always determines an
1P

accretive operator A, for which R(I+AA ) D L1 (a)+ as is stated in the next proposition.the netpr siin

Proposition 2. Let A be linear, densely defined and satisfy (Al), (A2). Let

SC P a nd assume at least one of the conditions:

(M) 0 is strictly increasing,

(ii) Zr0 > 0 , K such that 10(r)I 4 Kjrj for Ir C r 0

or

(iii) was (S) ( .

Then there is an m-accretive operator A in L (2) which extends Ai such that for

every A > 0 and f £ LI(S)

(1.2) lir (+X(CI+A)) f - (I+AA ) f.
C+0

-4



Moreover, for every 0 c there exists an accretive operator A0  in L (0) which

extends AO such that (1.2) holds for every X > 0 and f E L1 (0) - {f C L (n):f > 0)

Proposition 2 is tangential to our main concerns and is discussed and proved in the

Appendix.

Each 0 we deal with will allow the application of Proposition 2, and we take A to

be the correct interpretation of AO in (5). Solutions of (5) are then understood in the
-tA

sense of nonlinear semigroup theory - i.e. u(t) - e ) . An important fact for our

presentation is the;

Convergence Theorem: Let Gn , n - 1,2,*-*,- be a sequence of accretive operators in

L (0) such that D(Gn • D(G.) and R(I+AG M D(G) for n - 1,2,..., and

X > 0 . Assume

lim (I+XG n)-f - (I+XG.)'I f

n+O

for f E D(G) and A > 0 Then whenever fn c D(Gn) and f n + D(G) wehave

lim e n e %fn~

uniformly for bounded t P 0 * (All convergences are in L (). )

This theorem is a special case of known results (see, e.g., [6] for references). It
-tA

follows from Proposition I and the convergence theorem that im et(c I +A)4P u e u
+

uniformly for bounded t > 0 whenever u e D((EI+A)O) converges to u E D(AS).
-tA

Our main goal is to estimate the speed of the semigroup e generated by -A under

suitable assumptions on V . We will prove:

Theorem 3. Let A be linear, densely defined, satisfy (A), (A2) and 0 E P0  Assume

(1.3) C C I(R\{0}) , P' is locally Lipschitz on R\(01

and

(1.4) There exists m, M > 0 and v E {-1,1} such that

2 2M(O'(r)) rv1(r)4P"(r) ! M(,p'(r)) 2 a.e. r c R.

-tAp
Then V satisfies either (i) or (ii) of Proposition 2 and for S(t) - e

u0 F D(AP)

-5-



ISlt+h~uo Stuo1 C1.5) ia h t lUo I

where C - 2(M+1)(m+2N)/m
2

Remarks:

(a) The assumption 1.4) in a natural generalization of the condition p"/(00)2 C # 0

which is the homogeneous case treated in [7]. Note that v - 1 and v - -1 correspond

to quite different behaviours of v . For instance, if v - 1 then V is convex Mn

10,-) while if v - -1 it is concave.

One can easily see that for #P 4 P0 , (1.3) and (1.4) are equivalent to

E CI ( (0)), P/'0 is Lipschitz continuous on R and

(1.6) V-m ;P V(E) ) V-1

(where V101 is understood to vanish if V(r) - '(r) - 0 or r - 0),

or

r + ---- I'(r)I (logi'p(r)l if vm- 1) is convex and1-v.

11-V?

(1.7) r + V-- IV(r) -V M (log I(r) I if vM- 1)(1.7) 1 +-v14

is concave on each of (-,0) and (0,-)

Note that v - I implies m < I . Also note that if V - I , the convexity implies

(r)I Kir1, K - max(v"(r0 +), 0'(r0-)) on Itn • r0  so Proposition 2(11) holds,

while if v - -1 either 0 B 0 on 10,-) or 'P is strictly increasing by (1.6) and

Propositicn 2(i) holds.

(0) It would be interesting to know if the existence of the upper bound M in (1.4) is

necessary to have an estimate like (1.5). Our next result shows one needs only m if the

initial data is nonnegative and V - 1

Theorem 4. Let A be linear, densely defined, satisfy (A), 1A2) and 4P E P0 " Assume

a > 0, m * 1, v C (-1,1 and

1 O(r) is convex on (0,").

-6-



Let be as in Proposition 2 and S(t) = a • Then for u0 0 0, u0 c D(A )

(1.9) tvt V/m(S(t)u 0x)) is nondecreasing a.e. x c 0

If also v - I (so m < 1), then

St+h)uo - SltuO 21-m)
lh h 4 at l o11 •U Ih+.0

Remarks: Notice that (1.9) is a weak formulation of

dt (u)

where u - S(t)uO . If v - 1, then P(u)/O'(u) - (1 - m)u , so we obtain

1-M

dt2 - m U. This means t + t S(t)u0  is nondecreasing, which may be deduced fromtrt m

(1.9) directly when v - 1.

we begin the proofs of Theorems 3 and 4. While the formal manipulations which are the

basis of the main estimates are quite straightforward, there are considerable difficulties

concerning regularity to be overcome. We use a four-layered approximation process to

dispose of thene difficulties. One has been introduced already, namely the approximation

of Ap by (cI+A)P * To this we add the regularization of A itself by its Yosida

approximation AA - )'I(I - (I+XA) I ) - A(I+XA) "I and, in turn, the replacement of V by

its Yosida approximation 10. - - - (+a )'). A fourth approximation process is

introduced later. We recall that AA is m-accretive, defined on all of L' (0) and

bounded. Moreover, by Proposition 1, 11 (I+XA)-f II (If Ui for f E'-LP() n LI(a)p p

1 4 p 4 - and X > 0 . Thus Ak: LI(A) n LP) + LI(O) n LP(S) and A. on this domain

is accretive and Lipschitz continuous in the L () norm. The next lemma handles the

problem of passing to the limit in the approximation of v by 0 as a + 0

I"a 5. Let 0 f P 0 u0 E LI(0) n L(), o(u0 ) e LI () * Let E,X,u > 0 , and B -

cI+Ax.  Then the problems

(1.11)- + B (u ) -0 , u (0) - u
dt aa a 0

and

(1.12) di + BW(u) - 0 , u(O) - u0

-7-



have unique solutions u , u E W(I'm([0,-):L1 ()).

Moreover

lie, U a u in C([O,T]:L (Q))
a+0

(1.13) d:

lid a du in L (O,T:L 1())l i m d t d t

for every T > 0

Proof of Lemma 5. By Proposition 1, B~a  and BV are m-accretive in L Mf).

Moreover BV a BS as a 4 0 in the sense (I+)BW ) f + (I+XBO}-f for f , L (0),

X > 0 . Indeed, if f E L (Q) and

v + xBs (v)- f , v + ABV(v) - f

we also have v - v+XB0 (v,) - ABS(v) - XB(*(v) - (v)). Since BVs  is accretive this

yields

Iva - vI 1 < AIBIlsP(V) - V (V)ll

and the right-hand side tends to 0 as a + 0 because (v) C L I(S), IP (v) 1 IP(v) I

and w,(v) + v(v) a.e. by standard properties of the Yosida approximation 0 " Let
-atC e-TBc

T (t) - e and T(t) - e . Since B% + B , u a(t) - T at)u + T(t)u0- u(t) in

L 1()) as a + 0 uniformly for bounded t . 0 . Now B. is Lipschitz continuous soar
u a C ([0, )tL ( )) anda du

I a Ct) I 1 IB(u0)I for t 0 0

by the accretivity of BO. . As I'cp(u0) I < IV(u0 )I, Bpa(u 0) is bounded in LI (S)a 0 a du
independently of a > 0 and hence so are du /dt and o(u) d - -) bounded in

L (0,-:LI (A)). Moreover

(1.14) fT f a(u a )dt f B '(u 0 - u (T))dx.
0 n a

Since B enjoys the property (A2) together with A , lu (t)i. 4 Eu01- . It follows

that Cu a) is bounded in L () uniformly in a, t ) 0 and then, by interpolation, ina du

every LP(Q). We conclude that du is bounded in L (CO:L 2(Q)). This together withdu

1 du 2u a + u in C([O,-):L (S)), shows - E L (0,-:L (a)) and du /dt + du/dt weakly inud

L2 (0,T:L2 ()) for each T > 0 •F (C B I(- du a and the boundedness of ) _ -

l-B () weakly in L 2(0,T:L 2(p)). On

I



- - - -. a

the other hand, P Cu ) ( O(u) in measure and so (u) -B- l-), which establishes
ai a dt

(1.12) and its consequence

(1.15) fT f 0(u)dxdt f B-1 (u 0- U(T)).
0 a 1

Assume now u 0 0 so ua, u ; 0 • By (1.14), (1.15) and ua + u in C([0,u):L C()) we

conclude 0 Cu ) ( (u) in measure and

fT f (u)dxdt + fT f Cu )dxdt
0 S1 a0

Since (ua), Cu) ) 0 this implies 4P(u) + V(u) in L (0,T:L ()). If u0  is not of

fixed sign we may estimate aUa ) by oa (v) a) ( a (w a) where wa - T a (t)u,

v - T (t)(-) Since 0 (v ) and VaW ) converge in L I(0,T.L ( 2)) and P (u
ai a 0 C ai acaa

converges in measure, a(u ) converges in L1 . By the continuity of B

du d B BoUa) du 1 1
-- - in LIC0,T:LI((2)).

This completes the proof of the Lemma.

The next lema, which establishes the desired estimates on solutions of (1.12) with a

little extra regularity on v , contains the heart of the proof.

Lesma 6. Let 0 4 P0 u0 E LI(il) n L(g) and P(u.) E LI(C) * Let u be the solution

of (1.12).

Ci) Let S tE CR \ {0)) and satisfy (1.4). Then
du ____)lu0

(1.16) dtl C(m) 1
dt I t 0 1

with C(m,M) a 2(M+l)(m+2M)/m 2

2 1
(ii) Let s c C (0,-), S/O IE C O([0,-)) and satisfy (1.8). Let u0  0 • Then

(1.17) V " 1 u)
dt mt ' (u)

Remarks: If (1.8) is satisfied with v - 1 (and hence m < 1) and if C10) - [0,r 0 ] ,

then for r > r0

1-m n(r)
(r) '(r ) (r-r0 ) or 7(r)
1-m o(r)m 0 r) 0

If v - -1 , then r0 - 0 and (0/')(0+) - 0 , but (,O/o')' is not necessarily bounded

in a neighborhood of 0 * Because of this we impose the extra condition

-9-



(0/0') C C1 (0,-)) in (ii). Note that the stronger condition (1.4) implies (1.6) and uo

(v-rn) VC±)' V-N, , (-r- (M+l)IrI

on R\{o).

Proof of Lemma 5. Throughout the computations to follow we will use the fact that if

p: R + R is Lebesgue measurable and bounded, J(r) - frp(s)ds and w E WI1'(0,T.LI(A)),
10

then J(w) e WI'I(0,T: 
L (9)) and

d aez__ j(w) - p(w) At a.e.dtt

In particular, the above relation with p equal to the characteristic function of a null

set N c R (so j 2 0) implies that d (t,x) - 0 a.e. on ((t,x):w(t,x) E N)

The above is well-known when L () - R . For the reader's convenience a proof for

this case is given in Lemma a.1 of the Appendix. The general case follows by use of

Fubini' s theorem.

The main part of the proof of the lemma is the introduction of the function

t (u)(1.18) V = tut + p

where p C R is a parameter to be chosen, and the study of the equation satisfied by

v . Here and below, the subscript t denotes differentiation in t .

It is first assumed that 0 is locally Lipschitz on R for (i) and on [0,-) for

(ii). (This is implied by the assumptions if v = 1; if V - -1 we later

approximate V by Oo.) Since u c W 1 '(0,T:L 1 (9)), we have sp(u) e WI'I(0,T:LI(M))

and W(u)t - V'(u)ut . As B is linear and continuous (1.12) proves that u c

2 1'I(0,T:L 1 (a)) and

(1.19) utt + B(sP'(U)Ut) - 0.

Differentiating (1.18) we find

(1.20) Vt = Ut + tutt + P(C-)'(U)Ut

Taken together, (1.19) and (1.20) imply

tv + B(t'(u)v) + G(u)v - pG(u) P(u)t O' (u)

(1.21)

where G(r) -P(- - )(r) + p-1

-10-



set

f >i 0 (0) ro>
sign r - -1,1 r - 0 sign r m [0,-1] r -0

(-} < 0 (-1) C 0.

A selection out of signv means a measurable function a such that

a(x) c signv(t,x) a.*. x, etc. To prove Mi), multiply (1.21) by a selection out of

signv (which is a subset of signo(u)v) and use the accretivity of B in LI (a) to

conclude

d rho (u) I(1.22) td f Iv + f IG(u)IIvI 4 IPlI IG(u)l
1t ( '(u)

If we choose p - 2v/m the assumptions on 0 imply

(1.23) 1 ( G(r) 4 1 1 ( IC (N+-)lrl
m ' (r)

The estimates (1.23) used in (1.22) and integration in time of the result yields

ilK+) t 4M( M+1) tj

(1.24) tf Ivi + ft f (G(u)-1)lv 2 2t4m lul 2 1 f 1uI1
am m 0a2

where the last inequality comes from the accretivity of EV in L
1 
(0) which implies

lulI is nonincreasing. From (1.24) we have

1v11 -C4M( 1+1 )Iv1  2 0 lo 1
m

and this with the definition (1.18) of v implies

tlu 1  414(M1) lu0I1+ 2 10(u)l 4i 2(+1) (1+ 2)u I

t 1 2 3 0 1 Vu) a 01

whence the result.

-11-
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For (ii), we chose p - v/m which implies G(r) 0 on (0,-). Then multiply 1.21)

by a selection out of vsign'(vv) (which is a subset of v sign (v (u)v)) and use ()

for B to conclude

-t d f (vv)l(t) , 0

1 (U1o)

Since vv(0) - > u 
) 

0 , the above implies vv(t) > 0 . Recalling the definition

1.18) of v this implies

(1.25) - --1 (u)
t M 0(u)

This implies vtw(u) ; - 1(u)/m which is equivalent to (vt V/m(u)) ) 0
t t

When OP is not locally Lipschitz on R (or [0,-) for (Ui)) we approximate v by

its Yosida approximation 0 and u by the ua of (1.11). Unfortunately, 0 a need not

satisfy (1.4). Indeed, 0 Q(r) -fly a(r)) where y a(r) - (I+a.)' Ir)

and so

0 ,'(r) (71y ())r))/ + of' (Y (r))) and

da a~ OO( a ()

dr 1'(r) 2
a tip'(y aW)) 211 ao'(Y Q(r))]

It follows that if (1.4) holds, G is defined as in (1.21) with a in place of V and

p - 2v/m then

01.26) a
d(1.26) I- 7 + M and IG,(r)I 4- 2N/m

Since 01 is Lipschitz, computations leading to (1.22) are valid with u ,v - t u at

PO (u )/-1(u.) , Go in place of u,v,G and integration together with (1.26) gives
0 a aa 4M

(1.27) t f Iv I *t f (G (u )-)lv 1 - (1+')tu 0 %.
Q1 0 a a

By Lema 4, uat + ut in L (0,T:L (0)). It also follows from (1.26) and u. u in

C([0,T]L 1(0lthat 'a um )/Vl'(u) + Pul/4'(u) in L1 (0,T:L (11)). Hence va v in

LI(0,T:L1 (0)). Since 1 4 C 2(R /{0}) , G (r) converges to G(r) for r * 0 Hence

G (u )IV I (interpreted as 0 at points where u vanishes, since v 0 a.*. on
a a a aa

{(t,x):ua (t,x) - 0}) converges to G(u)IvI in L (0,T:L (0)). Thus one may pass to the

limit in (1.27) to obtain the desired conclusion.
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To obtain (ii) we also approximate u by u as above, The estimates (1.26) needa

not hold now, but since /' £ Ce(t0,], (N= /s') and G remain locally bounded onOL a a
[0,-) uniformly in a. Hence the convergence assertions above remain valid and we can

pass to the limit in the inequality

d V(u

-t - Gv (u fG )(vv f - (G (u] a
dt. a aaQ Q m Jaa ke(u)

which is deduced from the a-version of (1.21) with p - v/m as before. Since

G(u) ; 0 , we then obtain that f (vv)" is nondecreasing and finish as before.

Proof of Theorem 3:

There are three steps of the proof remaining. We first show that if 0 satisfies

(1.3) and (1.4), then it can be locally approximated by functions Vn satisfying the
-tBOn

hypothesis of Lemma 5 in such a way that e converges suitably to a~t BW . Then we

show that SB - (CI+AA)4 converges to (EI+A)s as X + 0 . Finally we deduce (1.5) as a

consequence of (1.16) in the various limits.

We know that (1.4) may be restated as the Lipschitz continuity of v/ip (entended as

zero on t{o0}) together with

(1.28) v-m ) v(-2)' V-ofo

Let g e C([0,w)) be of locally bounded variation, g(O) - 0 , and consider the

approximations gn , n - 1,2, *°" given by

(1.29) g n(r) - T ng(r) - n fren(s-r)g(s)ds - g(r) - 1 re n(s-r)dg(s)0 0

so that

(1.30) gn(r) = n jr en(s-rl)dg(s)
0

From (1.29) we see that Tn g is C? and converges as n - uniformly to g on compact

sets. Moreover, if g is nondecreasing, then gn(r) is nondecreasing in r as well as

n and gn increases to g . Moreover, from (1.30) we see that 0 C g' ( K implies

0 4 g' C K . Set g(r) - (v-m)r - vO(r)/VO(r) and define 0n on [0,-) by

vnn n (-m)r - T g, In(r,) - I(ri), where r, is chosen so that 0(r i ) > 0 and

large enough for what comes later. Since

-13-



(1.31) (r) - ) xp ar n( do

the above consideration imply that V. satisfies the assumptions of Lama 5 (with the

same N and a as 0 ) and 0n decreases (respectively, increases) to v on (Or 1 ] if

v - 1 (repectively, v - -1). We could likewise arrange that on converge

monotonically to o in the opposite sense by choosing g(r) - (v-N)r - vs()/01(r)

(which is nonincreasing), V/0n - (v-N)r - Tng. The analogous process is done on (-,O]

to define On on R so that 0n converges monotonically to s on (-r 1 ,ri ] .

Now, for f e L1 () with *ffl ( r, 6 let I > 0 and un be the solution of un +

B (u ) - f By Proposition 1(v) applied to B , lu I C IfI for p - 1,-. eancen n np p

un  is bounded in LI (2) and has its values in the interval for which n + 0 (r) is

monotone. Since B" 1 is bounded, 1n(un) - XI1B (f - u n ) is also bounded in L 1().

Since n # Cn(r) is monotone so is n + %(u n) (Lesa a.2 of the Appendix). Hence

n(Us) converges in L 1 () and so does un  by continuity of B . The limit u clearly

satisfies u + ASBO(u) - f • It follows from the convergence theorem that e u0

Ste tBou0 whenever u0 c LA(a), lu0 1. r rI

For the second step, let u,u solve

u. + (Cc+A,)p() - f , u + (CI+A)(u) - f

respectively, where f e L1 M) and o c PO . Rewriting the second equation as

u + (CZ+A X (u) - f + Ap(u) - A(u) and using this, the first equation and acretivity

we find

Iu-u XI1  IA A() - A0(u)I1 •

Since A is linear, densely defined and m-accretive, A v * Av as X + 0 for all v e

D(A) and we conclude that uA + u in L () . Thus (CI+A )V + (CI+A)V.

Now let 0 satisfy (1.3), (1.4) and U0 c D((CI+A)O). Choose u0 e L 1() n L(7C)
0 0

whose support is of finite measure so that u0 * u0  in L (C) With n as above, we

fix j and lot r1 > ujI . Set
1 0



-tBO(un 
0 101

My Lame 6

du i

Sims e uniformly for bounded t and ui(t)

-ttu

C vIl '(0,)1L 1 (0)) by Zamma S. the above inequality is correct with ui In

plae of u. oreover, since t (tIl is nonincrealing, we have

(1.31) *uj(t+h) - uj(t)I 4 1 C(m, )Iu I I

Now e' S +e u as J -, so (1.31) holds with u. - e +u o  in place of

u s. we may then send c to 0 to find (1.5).

Proof of Theorem 4.

The property (19) can be obtained from Lama 6(i) by suessive approxlmtions an

above. The asm tion (1.0) implies that (v-u)r - W(r)/v(r Ls nondereasing. As

above, it is the increasing limit of C1 nondeoreasing functions on [0,1] and we can

construct O satisfying the assmptions of Lom G(ii) converging monotonically to o on

any I0,rI ). rho rest is as above.

Por (1.10), if u is a solution of (1.12), we use that

SIutI - I t + 2 (ut))

by (A.3) applied to a , I Ut 4 0 b by (1.17)

somce fu Iu~ 4 2-1- 1 and (1.10) follows.
t a 0- -



Appendix

Proof of Proposition 2.

Let 0 4 P0 and A satisfy the hypotheses of Proposition 2. We may

simply define AV by

g 4E A(u) if aA > 0 and f e L1 () such

(e.1) that if u, = (I + X((CeI+A)')) 'f then

lin ut " u and g . A-1(f - u).
140

To see that A. extends W , observe that if U D(AV), f - u + XJV(u),

and u. - (I+ X(61+A)1) If then

u - ul L1 - I(I + )(cI+&) ) f - I + X(CI+A)O) l (f + C 0 (u))HL1

C I(u)I I + 0
L

so A-
1 (f - u) A C'(f - u) - AO(u). To see that AV is accretive, set

cc - (cI+A)V for C ) 0. Now if g C A10u , fa.1) implies the existence of

u such that u. + u and C~u. + g , i.e. A C liminfC. . Butthe

limit inferior of a family of accretive operators is clearly accretive.

We next show R(+AA) LI (a) , (I+)LA) L I()
+ 

C L (5)
+  

and

(l+X(cI+A)v) f 4 (I+)AV) f for A > 0 and f c L (a) * This merely

requires showing that if A) > 0 , f e LI (a)
+ 

and u solves

(a.2) uC + X(AU) + AiP(uC)) - f

then u ) 0 and lim u exists. Now u¢ ) 0 follows from Proposition 1,

as does the estimate

(a.3) u + A c(u C )1 1  lu C1 1 + ACI(u¢)l 1 ( Ill1•
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Moreover, we show that u€  is nonincreasing in E • This monotonicity and

the estimate (a.3) imply lim u exists. Indeed, if c > n > 0 we have
C40

(because V(u) o 0)

u + X(nV(u.) + AO(u )) - f - X(e - n) (u) C f

un + ) (n (u ) + AO(un)) - f

Now by Proposition 1, (I+X(rl+A)V)"1  is order preserving and thus

Remark: It would be nice (especially below) if tC(u ) 0 in L1 (), in

which case the current task would be quite simple. However, examples show

this to be false in general.

The final assertion of Proposition 2 has already been verified. We

consider next the case in which Iv(r)l 4 Kiri on Irl 4 r0 . We now seek to

show that if u solves (a.2) and f e 1 () is arbitrary, then li u
I C+O

exists. Since (I + A(aI+A)kO) " ) is nonexpansive, it suffices to choose f

from the dense set LI (Q) L (). Then lu I Ifll and there is another

constant X, such that WI(r)t X KI rl on Irl I Mf . Hence O(u1) is

bounded in LI () by Kiluell . Since (a.3) still holds, £o(u] + 0 in
Id

L1 (0) and

lut - un I I I(I+XAV) (f-Xeo(uU - (I+A#A-) (f-Xni(u)n1M

X )(It'(u)I 1 + 1no(u )11)

so u is Cauchy in L1(D) as C + 0 The cas measO < - is similar,

since then ci(u ) + 0 in Le() implies the convergence in LID ).

Remarks The above proof shows that AO is the closure of At in these

cases. With 0 R , C(r) - 3, A - 0 we have an example where A $Av.
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The remaining case is the one in which o is strictly monotone. Again

let f C L I(Q) n L7(a) and ' solve (a.2). Let u ur solve

u uv + A N e (U) + AI'(u )) - V
v
, v -

By the order preserving properties, u_ e u 4 u, • Moreover, by the first

case treated above, Ucv converges monotonically as e + 0 to uv e LI)

and so u. 4 u 9 u+ . Therefore, by the dominated convergence theorem, it is

enough to show that for 6 ) 0

ha- meau(lu - un I > 81 - 0.
Cfl0

Since uC,un are bounded and 0 is strictly monotone, there is a tz > 0

such that {Iu - u.l > 6) c {10(ud) - (Un) > P) Now

(u. - un) + XA(O(u) - O(u)) = (n(u ) - Cp(u))

Let p(r) - I if r P , p(r) - -1 if r < -P and p(r) 0 if

Irl 4 P Multiply the above by p((u) - (u )) integrate, and use

(A.3) to conclude

f I% - u T( I f rVP - V(u
{ I0(u t )-O(u n >111 flo C -(u TI () 1>111

Now lot K > 0 be such that ( Iu- u I>.} > {IA(u ) - IUn ) I > . There

is such a K because 0 is continuous. we have, by the above,

Kaeas(I(u) - >()( ) U) ' Iyn(u) - £(u )I 2 Imeas{( ) - >(un) ) U1.

But Co(u ) is bounded in L1 (0) and tends to zero in 7(a) . Thus

CV(uC) + 0 in LIP(G), I < p < - and we conclude that

ms{IV(uJ) - (un )I > v) and so meas{u C-unJ > 6)) tends to zero as

,* 0 , thus completing the proof.

Remarks:

(a) We do not know if (I + A (el+A))
"  

converges as E + 0 for

every if PO

-18
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JJ

(B) The definition of A0  is consistent with known examples. One important

N
case is 0 = R and A = -A o The construction of (3] coincides with ours

when Proposition 2 applies, however in [3] precise information on the domain

of A is obtained and more general 'ls are permitted.

Lemma a.1. Let p: R + R be Lebesgue measurable, bounded and j(r) -

f rp(s)ds. Let w 4 wll0,T: L1 (11)). Then Jlw) c WI'1 (0,T:LI(0))
0

and

(a.4) dt jlw) - p(w)A a.e.
.d "1

Proof. Let us treat the case LI (A) = R. Then the general case follows by

using Fabini's theorem and looking directly at lim (J(wlt+h)) - J(w(t)))/h.
h+0

One has to prove

(a.5) _fT*,(t)j(w(t))dt = fT *(t)p(w(t))w'(t)dt v e CO(0,T)

0 0 0

with the proof demonstrating the measurability of p(w)w' so that the

equation has a meaning. Notice that if (a.4) holds foz a sequence (Pn'Jn )

in place of (p,j) and pn converges boundedly everywhere to p , then (a.5)

holds for (p,j).

The relation (a.5) is obvious if p is continuous. If 0 is open in R

and p is the characteristic function X of 0 , then p is the increasing

limit of continuous functions. Hence (a.5) holds with p - X •

If N C R is a null set, then there is a decreasing sequence On  of

open sets such that 0 n N and measO + 0. Let N - n 0 so that

XN, - lim X is the decreasing limit of characteristic functions of open
n+" n

sets. By the above remarks, (a.5) holds with j - 0 and p - XN, P so

0 " X,,(w)w ale. and w' - 0 a.e. on (t E (0,T):w(t) c N c NI)

If Z c (0,T) is measurable, then there exists a decreasing sequence

0 of open sets such that On E and meas{n o \ E )= 0 . Set

Z - n O We have, by the above remarks, XE,(w)w' - XE(w)w' +n n E

* X3 ,\,(wlw - XE(w)w' a.e. and the validity of (a.5) for p X E , implies
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the validity for X Since any bounded measurable function is the uniform

limit of a sequence of simple functions the proof is complete.

Lemma a.2. Let B be linear, densely defined and satisfy (A.1), (A2). Let

04 f P0  and V(r) * (r) for all r . Let u C D(BO), V C D(B*) and

u + BO(u) = v + B*(v).

Then V(u) > *(v)

Proof. We have

(a.6) u - v + B((u) - *(v)) = 0

Set
I1 if s(u(x)) < *(v(x))

p(x) { 0 otherwise

Then p(x) E 0(jp(u(x)) - (v(x)) where

(o) if r > 0

O(r) = [0,11 if r - 0

(0) if r < 0.

Moreover, (u - v)p(V(u) - *(v)) -u - vj on {(u) < p(v)) by the

monotonl'ity of p and % i) , while (u - v)p(s(u) - *(v)) ) 0

Multiplying (a.6) by p(p(u) - I(u)) and integration with the use of (A.3)

yields

I lu -vi o
(ip(u) < 001)

so (u) > (v).

Remark: If it is known that lul, 1vI . rI and sp(r) > *(r) holds for
L L 1

Irl C r1  we clearly have the same conclusion.
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